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27  Abstract  

     The  recovery  of  natural  energy  flow  in f ood w ebs  is  an i mportant  indication t hat  a  restoration  

project  has  been a   success,  yet  is  typically  considered a   challenging  component  of  post-

restoration m onitoring  protocols.  Advancements  in r emote  sensing  and  SIA  offer  unique  

opportunities  to b uild a nd t est  new  metrics  that  more  easily  measure  food  web r ecovery  

following  restoration.  Here,  we  combine  fine-scale  remotely  sensed d ata  with S IA  mixing  model  

outputs  to d emonstrate  a  method f or  creating  energetic  landscape  maps,  or  E-scapes,  that  assess  

the  energetic  quality  of  a  multi-year  marsh r estoration e ffort  for  white  shrimp ( Litopenaeus  

setiferus).  These  maps  explicitly  link  spatial  features  with t he  resources  used b y  a  consumer  to  

allow  managers  to v isualize  and q uantify  how  a  restored l andscape  is  producing  energy  for  a  

target  species.  Our  results  support  many  known  restoration p aradigms  concerning  the  

relationship b etween h abitat  cover  and u se,  highlighting  its  potential  usefulness  for  monitoring  

purposes.  With f urther  testing a nd d evelopment,  these  products  could a lso b e  used i n t he  design  

of  restoration p rojects  and i ncrease  their  potential  for  success.  
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50 1.  Introduction  

     The  primary  goal  of  nearly  all  restoration e fforts  is  to r ecover  ecological  function t hat  has  

been l ost  due  to s ome  natural  or  anthropogenic  disturbance  (Higgs,  1997;  Wortley  et  al.,  2013).  

Ecological  theory  is  central  to r estoration s uccess  and c an h elp p redict  outcomes  and  track  

development  over  time  (Zedler  and  Kercher,  2005).  Restoration s cience  is  underpinned b y  

several  conceptual  sub-disciplines  of  ecology;  for  example,  community  assembly  theory  suggests  

that  initial  restoration s uccess  and v egetation e stablishment  can d epend o n t he  order  of  

vegetation a rrival  and t hus  be  guided b y  structured p lanting  routines  (Palmer  et  al.,  1997).  

Succession is   also a   key  component  because  a  greater  understanding  of  shifting  biological  

communities  following  restoration a ctions  informs  timelines  of  site  maturity  (Prach e t  al.,  2001).       

     Although d iverse  in d esign a nd  implementation,  most  restoration e fforts  attempt  to r e-

establish c ritical  habitat(s)  that  support  the  desired  suite  of  ecological  or  ecosystem f unctions  

(Suding,  2011;  Wortley  et  al.,  2013).  Ecological  restoration p ractitioners  aim  to c reate  the  

environment  necessary  for  recovery  so t he  plants,  animals,  and  microorganisms  can  conduct  

much o f  the  recovery  and  create  a  more  balanced s ystem.  Typical  metrics  of  restoration s uccess  

are  often m easured i n s ome  increase  in th e  amount  of  desired h abitat  or  an  associated r esponse  in  

faunal  presence  in c omparison t o s ome  reference  location d eemed t o  exhibit  the  desired  

functions  (James  et  al.,  2019;  Neckles  et  al.,  2002;  Wortley  et  al.,  2013).  However,  it  has  become  

clear  that  form d oes  not  always  equal  function w hen i t  comes  to r estoration  success;  areas  

deemed  “restored”  based  on h abitat  metrics  do n ot  necessarily  function a s  intended ( Abelson  et  

al.,  2015).  This  is  particularly  true  for  the  restoration o f  food w eb  function;  energy  flowing f rom  

primary  producers  to u pper  trophic  level  consumers  over  multiple  pathways  does  not  always  
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72 track with the typical restoration metrics of presence/absence or abundance (James et al., 2019; 

73 Moore and de Ruiter, 2012). 

74 Food webs are inherently complex, understanding how energy flow responds to restoration is 

75 difficult and costly (Ehrenfeld and Toth, 1997; Neckles et al., 2002). In the relatively few 

76 examples of in-depth food web analysis following restoration, stable isotope analysis (SIA) is the 

77 most commonly used tool to compare energy flow between restored and reference habitats 

78 (Howe and Simenstad, 2007; James et al., 2019; Rezek et al., 2017b). The most common stable 

79 isotopes used in restoration studies are carbon (13C) and nitrogen (15N). However, the use of 

80 additional stable isotopes, such as sulfur (34S) and hydrogen (D), could improve most 

81 assessments (Layman et al., 2012). Stable isotopes are particularly attractive as a tool to monitor 

82 restoration success because they can provide a time-integrated assessment of the flow of energy 

83 in the food web. The isotope values can be used to identify and trace the production that 

84 contributes to the food web and ultimately compare the primary energy sources used by the 

85 restored and reference food webs. Most modern approaches use Bayesian mixing models to 

86 assign food web contributions from sources in restored and reference habitats (Parnell et al., 

87 2013; Phillips et al., 2014). The primary benefit of these models is the incorporation of natural 

88 variation in isotope value between sites which then provides better estimations of source 

89 contributions (Parnell et al., 2013; Stock et al., 2018). Although few, studies that use SIA and 

90 mixing models suggest that habitat complexes, the physical composition of the habitats, is one of 

91 the most important components controlling food web recovery (James et al. 2019). This suggests 

92 that linking the physical dynamics of habitats beyond the presence or absence of a specific 

93 species or habitat class may be critical to understanding food web recovery. 



                  

             

                   

              

              

                

              

               

              

              

                

                

                

                 

              

               

             

       

                    

           

                

                 

             

94 Remotely-sensed landscape metrics are useful tools for quantifying large areas of habitat 

95 structure and understanding restoration development and trajectory. However, it is not always 

96 straightforward what the results of these metrics mean in terms of the ecology of a site (Kelly et 

97 al., 2011). Landscape ecology is based on the understanding of spatial arrangements within 

98 habitat mosaics and its influence on ecological phenomena (Wiens et al., 1993). Advancements 

99 in sensors and software have led to increased use of landscape metrics for assessing wetland 

100 configuration, fragmentation, and response to disturbance (Liu and Cameron, 2001; Stagg et al., 

101 2019; Suir et al., 2013). Applying this type of study to restoration benefits developmental 

102 analysis by informing local and regional habitat structure, providing guidance for selection of 

103 reference sites, and improving knowledge of habitat configuration and variation based on scale 

104 (Taddeo et al., 2019). Drones or unmanned aircraft systems (UASs) offer a unique data stream 

105 that can help restoration practitioners understand the current state and future trajectory of a site. 

106 The technology has witnessed a rapid increase in ecological applications and a decrease in costs 

107 (Harris et al., 2019; Pajares, 2015). The resolution and variety of products that can be created 

108 from one drone survey have powerful implications for short and long-term site assessments. 

109 Fine-scale site maps can help address gaps in monitoring and provide a more ecological 

110 approach for essential principles like landscape context and position, comparisons to natural 

111 habitats, and responses to disturbance. 

112 These advancements in remote sensing and SIA offer a unique opportunity to build and test 

113 new metrics of functional recovery following restoration. We combine fine-scale, remotely-

114 sensed data from a multi-year marsh restoration effort with SIA mixing model outputs to create 

115 energetic landscape maps, or E-scapes (James et al. 2020, Harris et al. 2020). We use this 

116 method to predict which types of restoration design produces the most energetically-beneficial 



            

                

                  

                 

     

     

                     

              

              

                   

             

                

           

              

                 

                    

                   

                 

               

               

                    

                     

             

117 landscape for white shrimp (Litopenaeus setiferus). E-scapes are species- or guild-specific 

118 landscape maps that classify discrete areas on the landscape based on their energetic benefit to 

119 the consumer(s) being considered. We hope this new type of analysis will be used to inform the 

120 design of future restoration efforts to improve outcomes for restoring food web function. 

121 1. Materials and Methods 

122 2.1 Site Description 

123 The Lake Sabine National Wildlife Refuge (SNWR) is the largest coastal marsh refuge on the 

124 gulf coast. Located in southwestern Louisiana within the Calcasieu-Sabine Basin of the Chenier 

125 Plain, the refuge encompasses 125,000 acres (about 500 km2) of coastal wetlands. From 1956– 

126 2006 this region lost over 900 km2 of wetland, much of that within the SNWR (Barras et al., 

127 2008). In 2001, the Louisiana Coastal Protection and Restoration Authority designated nearly 

128 6,000 acres in the SNWR for restoration due to the substantial marsh loss from canal-building 

129 and altered hydrology, saltwater intrusion, and hurricanes. Four separate dredge-and-fill 

130 restorations (known as Cycles 1–5) were completed between 2001 and 2015, restoring 1,120 

131 acres of saltmarsh and shallow water habitat (Sharp 2011) (Figure 1 & 2). The project phases 

132 were completed out of name order with Cycle 1 finished in 2002, Cycle 3 in 2007, Cycle 2 in 

133 2010, and Cycle 5 in 2015. Cycle 4 is currently under construction and is not included in the 

134 analysis. The fill material for each cycle was dredged from the Calcasieu Ship Channel by the 

135 Army Corps of Engineers to maintain navigation access and then pumped into containment areas 

136 to increase elevations and create new marsh. The dredge material slurry from the shipping 

137 channel was to be pumped into each of the containment dikes to a maximum height of 70 to 140 

138 cm and expected to settle to a height of 8 to 70 cm elevation after five years. While the general 

139 parameters for each cycle were consistent, the construction techniques and final formations 



              

        

                     

               

                 

            

                 

                

              

                      

                  

                    

                   

                  

               

                

              

              

           

                        

                  

                 

                

140 varied, making them useful for comparisons of how different construction techniques alter the 

141 functional outcomes for food web recovery. 

142 We chose two reference natural marshes on the western boundary of the restoration areas for 

143 comparisons. We chose these sites because they have been previously monitored by the Sabine 

144 National Wildlife Refuge and they are the largest “intact” marsh systems near the area where the 

145 restoration occurred. Reference North is a 50-hectare natural Spartina patens-dominated marsh 

146 system with fringes of Spartina alterniflora along a tidal creek channel that splits the site evenly 

147 north to south. Reference South is a 66-hectare natural marsh also dominated by Spartina patens 

148 and dotted with small patches of water scattered evenly throughout the site. 

149 Cycle 1 had an original containment of 86.6 hectares and was completed in February of 2002. 

150 It is the oldest restoration site in this study (18 years). Sediment was pumped to an elevation 

151 between 55 cm and 66 cm (Sharp 2011), it settled average elevation of 14 cm after 7 years (April 

152 2009), and has been accreting at a rate of 0.4 cm/yr since 2010 (Basin, 2019). The most recent 

153 average elevation reading was 18 cm (Basin, 2019). The site was built in the northeast corner of 

154 the refuge, bounded by existing retention dikes on two sides, using approximately 765,000 cubic 

155 meters of sediment pumped via a temporary pipeline from the Calcasieu Ship Channel. Cycle 1 

156 was the only site that was planted, with thirty-six thousand smooth cordgrass (Spartina 

157 alterniflora) plants established along the edges of the perimeter and the interior man-made 

158 trenasses (small channels) manually dug during construction (Basin, 2019). 

159 Cycle 3 was initially 93 hectares and completed in May of 2007 (Figure 2). It was pumped to 

160 an elevation of 12 cm to 60.6 cm using 633,637 cubic meters of dredge sediment. Sediment was 

161 incorrectly pumped into the containment area, causing the site to be higher in the south and 

162 lower in the north with a wide range of surface elevations. The containment levees were 



                

              

                     

                    

                 

                 

    

                       

                

              

               

                

                   

     

                      

               

                 

              

               

           

      

         

163 breached every 150 m on the northwest side to allow for the “spillover” delta formation 

164 component using sediment outflow; however, the technique did not work, and no additional 

165 marsh was gained. The site was surveyed in 2013 and had an elevation range of -62 cm to 25 cm, 

166 lower than the desired goal. By 2018 the site had accreted to an average elevation of 9 cm after 

167 11 years. Aerial imagery, which was collected in 2009 and 2015, showed the area was 4.5% 

168 vegetated after 2 years and 97.8% vegetated cover after 8 years and dominated by S. alterniflora 

169 (Basin, 2019). 

170 Cycle 2 had a containment area of 93 hectares, was completed in May 2010, and has less 

171 construction and historical monitoring data than other cycles because it was converted to a state 

172 of Louisiana-only project. Unlike other sites the desired “spillover” creation from breaching the 

173 containment levees was successful, creating an additional 40 hectares of marsh outside of the 

174 levee (Cycle 2 overflow). Limited field surveys reported the site to be an S. alterniflora 

175 monoculture and aerial imagery calculated it to be 77% land in 2015 (Suir et al. in review; Beck 

176 et al. 2019). 

177 Cycle 5 is 94 hectares built with 565,000 cubic meters of dredge fill, but initial elevation 

178 measurements were not taken at the time of construction (Pontiff 2017). Three years after 

179 completion (2018) the elevation was reported to be between -11.8 cm and 26 cm (Miller 2019). 

180 Vegetation expanded rapidly post-construction and the site was 64% vegetated land within 9 

181 months based on aerial imagery analysis from December 2015. S. alterniflora is the dominant 

182 species with nominal percentages of other plants throughout the site. 

183 2.2 Habitat Mapping & Estimation 

184 2.2.1 Unmanned Aircraft System (UAS) and flight parameters 



                  

                

                   

               

             

               

                   

             

                        

                   

                 

                 

               

                 

                

                 

                 

               

     

                    

                

                   

                    

185 All flights were conducted using a multi-rotor platform (Yuneec H520) designed for 

186 commercial purposes and chosen for this study because of high wind resistance, stability, and a 

187 long flight time (28 min). The flights occurred in the summer of 2019 from late June to mid-July 

188 between approximately 9:30 am–1:30 pm CDT. The flight area, time, altitude, and duration were 

189 configured using the internal autopilot flight planning software DataPilot. The internal Global 

190 Positioning System (GPS) module geotagged all images with an initial accuracy of 5 m 

191 horizontal and 8 m vertical. The hover accuracy of the aircraft was 1.5 m horizontal and 0.5 m 

192 vertical. The typical flight times ranged from 15 to 23 minutes. 

193 We used a Yuneec E90 RGB camera equipped with a 23 mm lens with a diagonal field of 

194 view of 91° to capture all images used in the analysis. The photo resolution was 3:2 (5472 × 

195 3648) and effective pixels were 20 MP. All photographs were stored as geotagged JPEG files on 

196 a micro SD directly inserted into the camera. The file size for each image was approximately 10– 

197 12 MB. Flight plans were developed using Yuneec DataPilot desktop mission planning software 

198 and uploaded to the ST16s remote controller before flight days. All flights were conducted at 68 

199 meters altitude above ground level using consecutive transects to cover the survey areas with an 

200 image overlap of 80% (frontlap and sidelap). This altitude was chosen to maximize field of view 

201 while achieving <2.5 cm ground sample distance (GSD) or pixel resolution in the final maps for 

202 a precise analysis of vegetation classes and to minimize possible blurred portions (Broussard III 

203 et al., 2018). 

204 We systematically chose ground control points (GCPs) around each site with at least one 

205 close to the center, in addition to randomly installed checkpoints throughout the study area. The 

206 x, y, and z coordinates of 69 points were taken with a Trimble R10 integrated GNSS system with 

207 an average error of 1.2 cm horizontal and 2.1 cm vertical. In total, 46 targets were used as control 



               

                  

             

            

    

                   

                    

                     

              

             

              

                   

   

      

                  

            

            

              

                 

               

                

                   

               

208 points for georeferencing the imagery, and 23 targets were reserved as horizontal and vertical 

209 checkpoints to help assess the accuracy of the data. In general, 6 GCPs and 3 checkpoints were 

210 used at each site based on software manufacturer recommendations (Pix4D Mapper) and 

211 previous studies (Manfreda et al., 2019; Oniga et al., 2018). 

212 2.2.2 Field Surveys 

213 To verify the remotely sensed data and compare the sites using traditional monitoring 

214 methods we used 3 replicate 2 × 2 m quadrats sampled along a transect from the edge of each 

215 site moving toward the center at 1, 100, and 200 m for a total of nine quadrats per site. We 

216 recorded the species composition, plant height, and percent cover of the vegetated and 

217 unvegetated surfaces. This methodology was chosen based on the Braun-Blanquet cover scale 

218 (Kent, 2011) used by the USGS Coastwide Reference Monitoring System (Steyer, 2010) and 

219 CPRA protocols that have been used to monitor these sites in the past (Folse et al., 2012; Miller, 

220 2014). 

221 2.2.3 Imagery Processing and Analysis 

222 The flights produced several thousand images per site that were post-processed using 

223 structure from motion (SfM) photogrammetry software Pix4D Mapper to create orthomosaics 

224 and digital surface models (DSMs). Orthomosaics are detailed, scaled, georeferenced photo 

225 representations of the area constructed from multiple images and DSMs are representations of 

226 the surface elevation and the tallest objects like vegetation or structures (Figures 2 and 3). We 

227 uploaded the GCP measurements with x, y, and z coordinates and horizontal and vertical 

228 precision error values, and the targets were manually clicked to verify the individual pixel center 

229 of targets using the ray cloud editor. Manual tie points (MTPs) were also added in the ray cloud 

230 to improve reconstruction accuracy and clarity in the final orthomosaic. We conducted all the 



                  

               

                   

                  

    

   

                   

               

              

              

              

             

             

                

             

              

                   

             

               

               

              

                

                 

231 image processing on a Dell Precision Tower 5810 desktop with 32 GB of RAM, an Intel Xeon 

232 CPU E5-1603 v3 @ 2.80GHz, and an NVIDIA Quadro M2000 GPU. Processing times ranged 

233 from 36–72 hours per site. A total of 20,515 raw images were processed to create 1,694 acres of 

234 mapped area with an average GSD (pixel size) of ~2.2 cm (excluding Cycle 4, which is still 

235 under construction). 

236 2.2.4 Classification 

237 Two products were created by combining the orthomosaics and DSMs: (1) land/water maps 

238 and (2) habitat classifications. Land and water classes were delineated based on rules developed 

239 by Cowardin et al. (1979) where land was considered all vegetation including marsh, 

240 scrub/shrub, emergent vegetation, and exposed bare ground on the containment dikes (which is 

241 higher elevation and does not flood). Water was considered open water, non-vegetated mudflats, 

242 floating aquatics (which were minimal), and submerged aquatic vegetation. To compare the 

243 construction techniques between restoration cycles, the habitats in each site were characterized 

244 as water, edge, or marsh. Each of the restoration sites contained small areas of construction 

245 artifacts that created anomalous landscape features often occupied by nonstandard marsh plants; 

246 we classified these areas as “other” and excluded them from the analysis. 

247 An object-based image analysis (Laliberte and Rango, 2011, 2009) was used to conduct 

248 vegetation mapping with the software eCognition Developer (v. 9.5, Trimble Germany GmbH, 

249 Munich, Germany). The orthomosaics and digital surface models provided four layers to use in 

250 image analysis (red, green, blue, and DSM). Each site was analyzed independently and separate 

251 “rulesets” were developed, using similar approaches and parameters, to assign classes to cover 

252 types. The rulesets are a step by step process of segmentation (grouping pixels into meaningful 

253 shapes, e.g., water bodies or trees) to create objects and classification of those objects based on 



                 

            

                 

               

              

               

           

               

                  

              

               

            

                  

                  

    

                   

              

                

                 

               

                 

                  

                  

254 attributes, or “features” in eCognition, unique to the target class. Cycles 3 and 5 and Reference 

255 South were completely automated using ruleset development which included a supervised 

256 classification as the last step and no manual editing needed. Cycle 1, Cycle 2, and Reference 

257 North were classified using one round of segmentation, basic rules to separate bare ground, 

258 marsh vegetation, water, and additional manual editing. Initial features used to define classes 

259 were mean brightness, mean red band, mean DSM, roundness, area, and position values for 

260 individual objects. Misclassified areas were identified and reclassified through additional 

261 thresholding of other parameters or manually edited into the appropriate cover type. We exported 

262 the vector layers with the area (m2) and border length (m) included in the attribute table and 

263 transferred to ArcGIS (ArcMap 10.4.1) for further spatial analysis and final cartography. The 

264 attribute tables were exported as spreadsheets and aggregated and analyzed using the R package 

265 ‘tidyverse’. We conducted accuracy assessments using stratified random sampling methods with 

266 525 test points per site (QGIS). The number of points per class was weighted based on the 

267 percent cover within the site however we required each class had a minimum of 25 points. 

268 2.3 Structural Analysis 

269 Remotely sensed class areas, percentage of landscape, number of patches, patch density, edge 

270 density, and aggregation index (AI) were calculated based on usage in previous studies 

271 (Broussard et al. 2018). Patch AI has become a widely used metric for evaluating landscape 

272 structure and is a percentage calculated from the ratio of the observed number of patch type 

273 adjacencies (McGarigal 2015; Couvillion et al. 2016). Edge habitat in this study was considered 

274 the marsh-to-water border. Since the sites were cropped to the marsh edge and no water was 

275 classified outside the boundaries, the border length of the water class was used as a proxy for 

276 interior edge habitat. Exterior edge habitat was simply the total length of the land class minus the 



                

               

                  

               

              

                

                

              

             

          

     

                    

                

                

                  

                  

                

                 

             

            

        

                     

                

277 amount of interior. Portions, where continuous habitat was cut off due to flight coverage, were 

278 measured and subtracted from total edge calculations. Removing the water also ensures the sites 

279 are only classified using the water within the borders of the restoration and it is not confounded 

280 by water or edge ratio around the perimeter. All landscape configuration metrics were calculated 

281 using R package Landscape Metrics that was developed from the program FRAGSTATS. The 

282 shapefiles created in eCognition were turned into raster format using the R package ‘fasterize’ so 

283 that spatial metrics could be analyzed. Vector files were rasterized to the original resolution of 

284 the mosaics used to conduct classifications. Correlations of these metrics were analyzed with 

285 ground survey data to determine any relevant trends for understanding marsh creation 

286 development in addition to restored vs reference comparisons. 

287 2.4 Stable Isotope Analysis 

288 For our analysis, we used white shrimp (Litopenaeus setiferus) as a model species to 

289 demonstrate how we can measure the ability of restoration landscapes to produce energy for the 

290 food web. The stable isotope analysis and mixing model methods and results used for this 

291 analysis are published in Nelson et al. (2019). Nekton were collected in August 2016 using a 1 

292 m2 drop sampler (Zimmerman et al.1984, Nelson et al. 2019), dried for 48 hours at 60 °C, 

293 ground into a fine powder, and shipped to the Washington State University Stable Isotope Core 

294 Facility for C, N, and S content and stable isotope analysis. The mixing model used particulate 

295 organic matter to represent water column production, Spartina alterniflora leaves to represent 

296 marsh production, Avicennia germinans leaves to represent mangrove production, and benthic 

297 epiphytes to represent benthic algal production. 

298 The relative contribution of each organic matter source to white shrimp was derived using a 

299 Bayesian mixing model. All stable isotope data were analyzed in R (v 4.0.0, R Development 
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300 Core Team) using the package ‘mixSIAR’ (v 3.1.7, Stock et al. 2018). The mixing model 

301 showed that mangrove production accounts for less than 1% of production and was excluded 

302 from this analysis because there are no mangrove habitats on these sites (Nelson et al. 2019). 

303 2.5 Energetic Landscape Maps 

304 We applied the mixing model results for white shrimp to each of the drone-based habitat 

305 assessments. A detailed description of the energetic landscape construction with an in-depth 

306 description and test of the underlying assumptions can be found in James et al. (2020). The 

307 habitat cover estimates developed from the UAS imagery were combined with consumer 

308 resource use from the mixing models to calculate an index of energetic importance (IEI) for each 

309 basal resource and habitat type combination. Each IEI was calculated with the following 

310 formula: 

311 
��� ���� = �������� 

312 where ��� is the fraction of the contribution of source i to the total source use based on the 

313 results of the mixing model and �������� is the fraction of habitat i that produces source i to the 

314 overall area within the movement range of the consumer. An example of resource/habitat 

315 combination is the amount of S. alterniflora derived production and the coverage area of S. 

316 alterniflora marsh habitat. The IEI provides a value for the amount of a resource that a consumer 

317 uses relative to the amount of that habitat in the foraging area where that consumer was captured. 

318 An IEI of one indicates the consumer is using a resource (��� ) in the same proportion it 

319 occurs in the area where it forages. If the IEI is greater than one, that resource is being used more 

320 than expected based on its distribution in the foraging area. IEI values were combined with 

321 habitat cover areas to calculate the habitat resource index (HRI). HRI was calculated with the 

322 following formula: 



    

                   

                   

                

                 

               

               

                        

                 

                 

               

          

    

     

                      

                  

               

               

           

                  

                  

                

� 
323 ��� = � ����� ∗ �������� 

��� 

324 where ����� is the median of the IEI for the source/habitat combination i and �������� is the 

325 fraction of habitat i to the overall area within the movement range of the consumer. HRI is an 

326 index that represents a relative measurement of the quality of the habitats for producing the 

327 collection resources used by the consumer based on stable isotope analysis. An HRI value of one 

328 means that the area is producing resources proportional to the mean contribution of each 

329 production source used by the consumer as determined with the mixing model. 

330 Each restoration cycle was divided into 400 m × 400 m (16 ha) habitat blocks to calculate the 

331 HRI for white shrimp. This value was chosen based on typical movement ranges of white shrimp 

332 in the field (Nelson et al., 2019; Rozas and Minello, 1997; Webb and Kneib, 2004). Sensitivity 

333 analysis in James et al. (2020) showed a significant relationship between shrimp biomass and 

334 HRI from 50 m2 to 1000 m2 scales. 

335 3.0 Results 

336 3.1 Habitat Assessment Results 

337 The proportion of land at each site varied from 73.2% to 95.5% with the youngest cycle 

338 (Cycle 5) having the lowest proportion of land and the oldest site (Cycle 1) the highest. Both 

339 reference sites were approximately 91% land (Table1). All of the sites had aggregation indexes 

340 higher than 98% indicating the patches identified by the software were highly clumped and 

341 easily discernable from adjacent classes (Table 1). 

342 The drone-based habitat assessments indicate the restoration sites were 74–90% covered by 

343 marsh vegetation. The youngest site, Cycle 5 (4 years old), was 90 ha and had the lowest 

344 proportion of marsh cover (74%) with the remaining 26% covered by water. The oldest site, 



                     

                 

                   

                     

               

                

     

       

      

                    

              

               

               

                

     

                        

                   

                 

                 

               

               

              

           

345 Cycle 1 (18 years old), was 108 ha and had the highest amount of marsh cover (90%). It also had 

346 the highest percentage of shrubs and P. australis (“other” class) at 6%. The other two restoration 

347 sites, Cycles 2 and 3, were 84–85% marsh-covered. Cycle 2 (9 years old) was 138 ha and Cycle 

348 3 (12 years old) was 93 ha (Table 2). Cycle 2 was the largest site and contained the most marsh 

349 (117 ha) because of the successful sediment overflow technique. The reference sites were both 

350 88% marsh, 8–9% water, and 3–4% “other.” Reference North was 50 ha and Reference South 

351 was 66 ha. 

352 

353 3.2 Mixing Model Results 

354 Benthic algae supported 49.2% (± 3.7 %) of white shrimp biomass. Water column production 

355 (38.1% ± 6.8 %) was the second most important component supporting shrimp biomass, 

356 followed by Spartina detritus (12.5% ± 3.6%). Mangrove production was not included in this 

357 analysis as the mixing model determined mangroves contributed less than 1% to shrimp biomass 

358 and there is no mangrove habitat on the restoration sites (Nelson et al. 2019). 

359 3.3 Energetic Landscape Results 

360 IEI values for edge and water were around 5 at most sites and were much higher than marsh, 

361 which had IEI values <1 at all sites (Figure 4). Each site contained areas of higher and lower 

362 energetic quality depending on the physical parameters in that cell of the E-scape (Figure 3). The 

363 median HRI value for the E-scape sampling unit across all sites was 1.11 with an interquartile 

364 range of 0.38–1.99. HRI values displayed a negative relationship with the proportion of total 

365 land and the proportion of marsh habitat within the E-scape sampling unit (Figure 5, 

366 supplemental figures). There was a positive relationship between HRI and the proportion of 

367 landscape edge habitat with the E-scape sampling unit (Figure 5). 



  

   

                   

              

             

                 

               

             

               

                

             

             

              

    

                   

              

                

                

                  

                  

                

                  

368 

369 4.0 Discussion 

370 For habitat restorations, the recovery of natural energy flow patterns is an important 

371 ecosystem function that may indicate a restoration project has been a success. However, post-

372 restoration monitoring efforts have focused little on understanding energy flow and trophic 

373 dynamics (Ehrenfeld and Toth, 1997; Neckles et al., 2002), as food webs are complex and their 

374 structure is hard to monitor (Vander Zanden et al., 2006). By combining stable isotope 

375 information on energy flow with remotely-sensed landscape metrics, our method provides a 

376 clearer and deeper inferential method of assessing whether a project has restored food web 

377 function. Further, we feel our results demonstrate the utility of our method in evaluating how 

378 different construction methods would impact food web recovery. Our results indicate the 

379 importance of geomorphology or habitat form and support many known restoration paradigms 

380 concerning the relationship between habitat cover and species use, highlighting its usefulness for 

381 monitoring purposes. 

382 Edge habitat has been well-established as an important driver of consumer biomass and 

383 abundance in saltmarshes (Minello et al., 1994; Webb and Kneib, 2002). Our E-scapes 

384 demonstrate the importance of this edge habitat to energy flow through white shrimp in these 

385 restored habitats (Figure 3). Edge habitat had high index of energetic importance (IEI) values at 

386 all sites because of the outsized reliance on the resource it produces (benthic algae) (Litvin et al., 

387 2018) relative to the amount of edge area that exists at each site. While benthic algal production 

388 likely occurs across much of the marsh surface, the shallow edge habitat where light penetrates 

389 to the bottom has the highest concentration of benthic algal production and has been shown to be 



               

                

                       

                

                   

                  

                    

                

              

                

                 

                

                   

               

               

               

               

                 

   

                     

               

             

               

390 an important area for marsh consumers (Kneib 2003). Therefore, areas with more edge are 

391 energy-rich for shrimp, leading to a positive relationship between edge area and HRI values. 

392 Cycles 1 and 2 were most similar to the energetic values of the reference habitats (Figure 3). 

393 Both of these sites have greater water-to-edge ratio due to the construction techniques used to 

394 create them. In Cycle 1 the areas with the trenasses have much higher HRI values than areas of 

395 the site that were not trenched (Figure 3A). Cycle 2 is the site where the “spillover” technique 

396 was successful and the spillover area has some of the highest HRI values of any of the study sites 

397 due to the highly reticulated habitat structure and high edge ratio (Figure 2B). Conversely, marsh 

398 habitat has consistently low energetic importance at all sites. Cordgrass productivity is typically 

399 incorporated into the food web through the detritus pathway (Nelson et al., 2019), and white 

400 shrimp do not rely on this pathway heavily (Nelson et al. 2019). Thus, restoration through the 

401 creation of cordgrass habitat (and land overall) does not directly promote the provision of energy 

402 for the food web as a function of total areas (Figure 4 and 5). This observation demonstrates a 

403 critical consideration for restoring food web function, the structure created by the macrophyte is 

404 critical to creating the areas that generate the most energetically-valuable areas of the habitat. 

405 Frequently the success of restoration efforts, particularly in Louisiana, are measured in new land 

406 created and amount of habitat restored. However, the geomorphology and structure of the habitat 

407 is a key feature to consider when designing a restoration to promote recovery of food web 

408 function. 

409 Managers can use this tool during monitoring to assess the energetic health and progress of 

410 establishing food webs in their restored site without major changes to their established data 

411 collection programs. Post-restoration food web analysis is already typically done via stable 

412 isotope analysis (James et al., 2019; Rezek et al., 2017b, 2017a). Remote sensing (via 



              

               

                 

                  

                

              

                 

              

         

                  

                  

             

              

             

            

        

                    

             

                 

           

                

      

      

413 drone/UAVs or satellite imagery) is a tool widely employed to monitor the establishment, 

414 progression, and recovery of areas to reference levels of habitat cover (Klemas, 2013). E-scapes 

415 combine these sets of data to produce a visual product that imparts new information about the 

416 progress of the pattern of energy flow at a restoration site. E-scapes can be tailored for target 

417 species to assess the success of a restored landscape in producing the collection of energy 

418 channels that support consumers that meet specific restoration goals (Harris et al. 2020). E-

419 scapes can also be used to visualize variability in energy production across different parts of the 

420 restored landscape, leading to better design and construction of restoration habitats planned to 

421 restore natural energy flow patterns and trophic dynamics. 

422 When combined with ecological models or indices, remotely-sensed data have much promise 

423 as a scientific monitoring tool. For this study, the use of UAS imagery in conjunction with the 

424 IEI, for the quantification and monitoring of wetland ecosystem goods and services, 

425 demonstrates the increased value for evaluating the performance of wetland restoration on food 

426 web function and energy flow. With near-term technological improvements (e.g., fusing of UAS-

427 collected hyperspectral imagery and LiDAR data), UAS applications will become increasingly 

428 critical for environmental monitoring and research. 

429 With advances in the spatial and spectral resolution of remotely sensed data from UAS, 

430 aircraft, and satellite technology, high-resolution maps and fine-scaled indices are possible that 

431 resolve the smallest ponds and pockets of the marsh landscape. Access to these products is now 

432 available through off-the-shelf drone technology and automated software workflows. Traditional 

433 tools and methods for quantifying energy flow through these newly resolved models will need to 

434 be adapted and scaled up. 

435 5.0 Limitations and Future Considerations 



                    

                 

                     

                  

                

              

               

               

                

                 

                

               

               

                 

              

                 

              

           

                      

             

                  

               

436 As with any new methodology, there are several assumptions and methods that can be 

437 improved in later iterations to better capture how energy is flowing in the system. For example, 

438 in our calculation of HRI and IEI values, the fraction of habitat (�������� ) is based on the area of 

439 habitat cover. This means that all habitat of that type will produce energy equally and in two 

440 dimensions. For aquatic habitats this can be problematic given the patchy nature of certain types 

441 of production, or how depth and light penetration modulate productivity when considering water 

442 column production. In addition, our habitat classifications are simplistic with a patch receiving a 

443 single classification. In the real-world multiple production sources could occur on the same patch 

444 (e.g. benthic algal production between cordgrass stems). Scale is also a critical assumption in our 

445 approach. In this example we use shrimp home range information to determine the scale at which 

446 the consumer uses resources to generate our metrics. For organisms that move at much larger 

447 scales how the habitat cover types are classified and aggregated becomes more complex as 

448 increasing numbers of sources and habitat types are incorporated. Our methods can easily be 

449 adapted to consider these factors by adjusting habitat productivity by depth or with data, such as 

450 chlorophyll concentration, over time. Movement and diet information could be used to identify 

451 the proper scales and identify habitats used for foraging. Although these types of data do not 

452 currently exist for our study area, technological advances in remote sensing, videography, and 

453 animal tracking make attaining this information more feasible than ever. 

454 Stable isotope analysis has been shown to be a powerful tool to understand how food webs 

455 respond to change. With the recent technological advancements in fine-scale remote sensing 

456 technology, we feel the time is right to begin to combine these two powerful tools to illuminate 

457 spatial patterns in energy flow that had been previously unattainable. While our initial efforts 



                 

           

       

  

             

              

        

   

             

             

            

                 

         

    

  

     

          

   

458 may be limited is some ways, they provide a framework to build toward a potentially powerful 

459 tool for assessing and planning coastal zone restoration projects. 

460 
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616 Tables 

617 Table 1: 

Site 

Cycle 5 

Cycle 5 

Cycle 2 

Cycle 2 

Cycle 3 

Cycle 3 

Cycle 1 

Cycle 1 

Reference North 

Reference North 

Reference South 

Reference South 

Class 

Land 

Water 

Land 

Water 

Land 

Water 

Land 

Water 

Land 

Water 

Land 

Water 

Class Area 
(ha) 

67.6 

24.7 

119.3 

18.7 

80.9 

12.7 

102.9 

4.9 

44.8 

4.5 

61.0 

5.4 

Percentage of 
Landscape 

73.2 

26.8 

86.5 

13.5 

86.4 

13.6 

95.5 

4.5 

91 

9 

91.8 

8.2 

Patch 
Density 

718 

880 

529 

3199 

6212 

773 

168 

435 

1339 

1327 

1957 

515 

Aggregation 
Index 

99.9 

99.7 

99.8 

99.1 

99.9 

99.2 

99.9 

98.8 

99.9 

98.8 

99.9 

98.8 

618 

619 



    

              

               

         

                 

              

                

                   

                

              

                

                

   

                 

                  

     

620 Figure Captions 

621 Figure 1: Satellite image of the reference and restoration sites in Sabine, LA 

622 Figure 2: Land and water classifications from UAS imagery overlaid on satellite imagery to 

623 show the geographic location of each site. 

624 Figure 3: a) Cycle 1 UAS classified imagery and calculated E-scape map, b) Cycle 2 UAS 

625 classified imagery and calculated E-scape map, c) Reference South UAS classified imagery and 

626 calculated E-scape map. Each map is made to show the energetic landscape for white shrimp 

627 (Litopenaeus setiferus). Each cell in the E-scape maps is 400 m × 400 m and the maps are 

628 clipped to the restoration site. Areas in red indicate habitats cells that have higher energetic 

629 values and areas in blue are less energetically favorable for shrimp foraging. 

630 Figure 4: Index of Energetic importance values for 20 random points sampled in each site. 

631 Higher values for a habitat type indicate greater energetic importance for white shrimp at that 

632 site. 

633 Figure 5: A) Regression of land cover, B) Marsh Cover, C) Edge habitat indicating that marsh 

634 edge and the interface between land and water are the most important factors to consider for food 

635 web restoration. 
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